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Critical and near-critical branching processes
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Scale-free dynamics in physical and biological systems can arise from a variety of causes. Here, we explore
a branching process which leads to such dynamics. We find conditions for the appearance of power laws and
study quantitatively what happens to these power laws when such conditions are violated. From a branching
process model, we predict the behavior of two systems which seem to exhibit near scale-free behavior—rank-
frequency distributions of number of subtaxa in biology, and abundance distributions of genotypes in an
artificial life system. In the light of these, we discuss distributions of avalanche sizes in the Bak-Tang-
Wiesenfeld sandpile model.

DOI: 10.1103/PhysRevE.66.011907 PACS number~s!: 87.23.Kg, 05.65.1b, 05.40.Fb
ys
in

le
io

t

n
es
el
e

of

ha
cr
th

o
e

d

n

o
v
i

o
y
ti
io

w
am
n

ss
rns

ng
of
rol
ons,

ro-
es

ider
nts
h

so
is-
ed

as
he
rt-
by

f-
I. INTRODUCTION

Scale-free distributions, orpower laws, have been ob-
served in a variety of biological, chemical, and physical s
tems. Such distributions can arise from different underly
mechanisms, but always involve aseparation of scales,
which forces the distribution to take a standard form. Sca
free distributions are most often observed in the distribut
of sizes of events~such as the Gutenberg-Richter law@1#!,
the distribution of times between events~e.g., the intereven
interval distribution in neuronal spike trains@2#!, and fre-
quencies. An example of the latter is the well-known a
ubiquitous 1/f noise. Some systems are even more inter
ing because they seem to exhibit self-organization or s
tuning, concomitant with scale-free behavior as an inher
and robust property of the system, not due to the tuning
control parameter by the experimenter.

Two systems to which such spontaneous scale-free be
ior has been attributed are sandpile models and taxon
ation in biological systems. The former has served as
paradigm of ‘‘self-organized criticality’’~SOC! @3#, while the
latter, manifested in the form of near power-law shapes
rank-abundance curves, has been advanced as evidenc
fractal geometry of evolution@4#.

A much simpler system where power laws are observe
the random walk@5#. For example, the waiting timest for
first return to zero of the simple random walk in one dime
sion @starting atx50, at each time step,x(t11)5x(t)61
with equal probability# have a probability distribution
;t23/2. Closely related to random walks, branching pr
cesses@6# can also create power-law distributions. They ha
been used to model the dynamics of many systems in a w
variety of disciplines, including demography, genetics, ec
ogy, physiology, chemistry, nuclear physics, and astroph
ics. Here, we use a branching process to model the crea
and growth of evolutionary taxa, and discuss its applicat
to avalanches in SOC sandpile models.

In Sec. II, we examine the properties of theGalton-
Watsonprocess. We find that this process can generate po
laws by appropriate tuning of a control parameter, and ex
ine the dynamics of the system both at the critical point a
1063-651X/2002/66~1!/011907~8!/$20.00 66 0119
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away from it. In Sec. III, we apply this branching proce
model to the taxonomic rank-frequency abundance patte
of evolution, and discuss the universality of their underlyi
dynamics. Finally, in Sec. IV, we discuss the implications
our work, including a discussion of the order and cont
parameters for the branching process and its applicati
and suggest further questions.

II. THE BRANCHING PROCESS

The Galton-Watson branching process was first int
duced in 1874 to explain the disappearance of family nam
among the British peerage@7#. It is the first branching pro-
cess in the literature, and also one of the simplest. Cons
an organism that replicates. The number of replica
~daughters! it spawns is determined probabilistically, wit
pi( i 50,1,2, . . . ,) being the probability of havingi daugh-
ters. Each daughter replicates~with the samepi as the origi-
nal organism! and the daughter’s daughters replicate and
on. We are interested in the rank-frequency probability d
tribution P(n) of the total number of organisms descend
from this organism plus 1~for the original organism!, i.e.,
the historical size of the ‘‘colony’’ the ancestral replicant h
given rise to. Note that this is equivalent to asking for t
probability distribution of the length of a random walk sta
ing from 1 and returning to 0 with step sizes given
P(Dn)5pi 21 ( i 50,1,2, . . . ,) @8#.

The abundance distributionP(n) can be found by defin-
ing a generating function

F~s!5(
i 51

`

P~ i !si . ~1!

This function satisfies the relationship

F~s!5s(
i 50

`

pi@F~s!# i , ~2!

from which eachP(n) can be determined by equating coe
ficients of the same order ins @6#. This result can also be
written as
©2002 The American Physical Society07-1
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P~n!5
1

n
Q~n,n21! ~k>1!, ~3!

whereQ( i , j ) is defined as the probability thatj organisms
will give birth to a total of i true daughters@5#. However,
these approaches are not numerically efficient, as the ca
lation of P(n) for each new value ofn requires recalculation
of each term in the result.

For our present purposes, we approach the problem
different manner. LetPku j be the probability that givenj
original organisms, we end up with a total ofk organisms
after all organisms have finished replicating. Obviously,

Pku j50 ~k, j !, ~4!

since it is impossible to have less total organisms than
starts out with, and

P1u15p0 , ~5!

i.e., the probability for one organism to have no daughters
little less obviously,

Pku15 (
j 51

k21

pj P(k21)u j , ~6!

Pku j5 (
i 51

k21

Pi u1Pi u( j 21) ~ j >k.1!. ~7!

These equations allow us to use dynamic programming te
niques to calculateP(n)(5Pnu1), significantly reducing the
computational time required. Also, from Eq.~6!, we can
write

Pnu1

P(n21)u1
5p11p2

P(n21)u2

P(n21)u1
1p3

P(n21)u3

P(n21)u1
1••• . ~8!

Since, forn→`, Pnu j is uniformly decreasing, we see

P~n!

P~n21!
5

Pnu1

P(n21)u1
→C as n→`, ~C<1! ~9!

whereC is a constant.C indicates the asymptotic behavior o
P(n) as n→`. If C,1, the probability distribution is as
ymptotically exponential, while forC51, the probability
distribution is a power law with exponent23/2.

Let us now examine the behavior ofP(n) whenn&104,
the more relevant case in the examples to follow. Using E
~4!–~7!, we can numerically calculateP(n) for different sets
of pi . We definem as the expected number of daughters
organism, given a set of probabilitiespi ,

m5(
i

ip i . ~10!

We see that the branching ratem ~thecontrol parameter! is a
good indicator of the shape of the probability curve~Fig. 1!.
Whenm is close to 1, the distribution is nearly a power la
and the furtherm diverges from 1, the further the curv
01190
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diverges from a power law towards an exponential. Wh
m51/2, the curve is completely exponential. For a popu
tion of organisms,m is a measure of the tendency for ne
generations to grow, or shrink, in number. A value ofm.1
indicates a growing generation size, which implies that th
will, on average, be no generation with no daughters, a
that the expected number of total organisms is infinite. C
versely,m,1 indicates a shrinking population size: The
will be a final generation with no daughters, and the expec
number of organisms is finite. Whenm51, the system is in
between the two regimes~the system is said to be ‘‘critical’’!,
and only then is a power-law distribution found. In gener
the branching rate is determined by the ratio of the rate
introduction of competitorsRc to the intrinsic rate of growth
of existing assemblagesRp via

m5S 11
Rc

Rp
D 21

, ~11!

as can be shown by assuming stationarity. As this ratio g
to 0, m→1 and the system becomes critical.

In the following section, we explore systems where t
‘‘organisms’’ are individual members of species or taxa in
taxonomic tree, andm is the average number of exact copi
an individual makes of itself, or the average number of n
taxa of the same supertaxon a taxon spawns, respecti
The same thinking can be applied to tumbling sites in
sandpile model, wherem would stand for the average num
ber of new tumbles directly caused by a tumbling site.

III. APPLICATIONS

A. Neutral model

We first present a simple simulation to test our analy
and lay the groundwork for the exploration of more comp
cated systems. Consider a population of organisms on a fi
two-dimensional Euclidean lattice, one organism to a g
square. Each organism can beviable or sterile. All viable
organisms replicate approximately everyt time steps~there
is a small random component to each individual’s replicat
time to avoid synchronization effects!, while sterile organ-
isms do not replicate. When an organism replicates,
daughter replaces the oldest organism in the parent’s n

FIG. 1. Predicted abundance patternsP(n) of the branching
model with different values ofm. The curves have been individuall
rescaled.
7-2
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site neighborhood~Fig. 2!. We define thefidelity F as the
probability that the organism will create a daughter of t
same type as itself and the correspondinggenomic mutation
rate R(512F) at which it creates copies different from
itself. The genomic mutation rate is actually the sum of t
rates, a probabilityRn for the daughter to be viable but to b
of a newgenotype, different from that of the parent~neutral-
ity rate!, and a probabilityRs of the daughter being sterile
Of course,Rn1Rs5R. Note that all viable mutant daughte
still share the same replication timet—all mutations are
neutral~see Fig. 3!. Such a system gives rise to abundan
distributions of power law and near-power-law type, whi
can be predicted as follows.

The total number of organisms is determined by the s
of the grid. We write equilibrium conditions for the tota
number of organismsrA , and for the total number of viable
organismsrV ,

DrA;arV2rA50, ~12!

DrV;vrV2rV50, ~13!

wherea is the average number of daughters~viable and ster-
ile! a viable organism has, andv is the average number o

FIG. 2. Neutral model grid. The organisms live on an Euclide
grid, one organism to a site. When an organism replicates
daughter replaces the oldest organism in the nine-site neighborh
~If the organism marked by a black dot replicates, its daughter
places one of the organisms at a gray site.!

FIG. 3. Neutral replications and mutations. An organism
daughter is of the same genotype as the organism with probab
F, it is of a new, viable genotype with probabilityRn , and it is
sterile with probabilityRs such thatF1Rn1Rs51.
01190
e

e

viable daughters a viable organism has. Introducingm—the
average number of true daughters~daughters which share th
parent’s genotype! for a viable organism—we see that

v5
F1Rn

F
m5~F1Rn!a. ~14!

From Eqs.~12!–~14!, we obtain steady state solutions fora
andm,

a5
F21

11
Rn

F

, ~15!

m5
1

11
Rn

F

. ~16!

Using the branching process model, we can predict the ab
dance curve from the values ofa andm ~or conversely,F and
Rn). Figure 4 shows abundance data for two neutral mo
runs with differing values ofRn ~and consequentlym), along
with predicted distributions~which use onlyRn and F as
parameters! based on the branching model. Although the d
tribution patterns are very different, both are fit extreme
well by the branching process model’s predicted curves
Eq. ~16!, note thatRn is the rate of influx of new genotype
~and therefore new competitors for space!, while F is the rate
of growth of existing genotypes. The value ofm is deter-
mined by the ratio of these two rates. Unless the total nu
ber of creatures is increasing,m<1 (m51 if and only if
Rn→0 and new competing genotypes are introduced a
vanishing rate!.

B. Artificial life

Our next system is the artificial life systemsanda@9#, an
example of environments which host digital organisms@10#.
In this system, while the organisms occupy a tw
dimensional grid as in the neutral model detailed above,
organisms are no longer simple, and instead each has a

n
ts
od.
-

ity

FIG. 4. Abundance distributions and predicted curves for t
neutral model runs. The run shown by circles (;1.53106 data
points! had a grid size of 300033000, F50.5, andRn50.5, while
the one represented by crosses (;0.63106 data points! had a grid
size of 1003100, F50.2, andRn50.1.
7-3
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CHRISTOPH ADAMI AND JOHAN CHU PHYSICAL REVIEW E66, 011907 ~2002!
plex genotype consisting of a string of assembly langua
like instructions~Fig. 5!. Each organism independently e
ecutes the instructions of its genotype, and this genot
determines the organism’s replication timet. Unlike the neu-
tral model, the system allows non-neutral mutations wh
lead to new genotypes with both lower and higher replicat
times than the parent.

The system and the instructions are designed so tha
organisms can self-replicate by executing certain seque
of instructions. The replication time of an organism is no
predetermined constant, rather it is determined by the ge
type of the organism: Organisms can replicate faster
slower than other competing organisms with different ge
types. For an organism to successfully replicate, its geno
must contain information that allows the organism to alloc
temporary space~memory! for its daughter, replicate its
genotype ~one instruction at a time! into this temporary
space, and then to divide, placing its daughter in a grid
of its own ~Fig. 5!. As in the neutral model, on division, th
daughter replaces the oldest organism in its parent’s nine
neighborhood.

Organisms, depending on their genotype, may not be
to replicate~may be sterile! or may only be able to replicat
imperfectly ~resulting in no true daughters!. Also, the copy
instruction, which the organisms must use to copy instr
tions from their own code into that of their nascent daug
ters, has a probability of failure~copy mutation rate!, which
can be set by the experimenter. When the copy instruc
fails, an instruction is randomly chosen from all the instru
tions available to the organisms~the instruction set! and
written in the string location copied to. Copy mutations a

FIG. 5. Example sanda genotype. Sanda organisms have g
types that are strings of sanda code. The string shown above r
cates by searching forward~instruction 1! for the complement of the
template nop-A nop-A ~2,3!, which is nop-B nop-B ~21,22!, ma-
nipulating this value in an internal register to find the genoty
length ~4,5!, allocating enough memory to store code of genoty
length ~6!, setting registers to prepare for copying~7–11!, copying
the instructions one at a time~12–19! until all instructions have
been copied~15,16!, and replicating~20!—placing the daughter in
its own grid site. Execution restarts at the beginning of the genot
when the end of the genotype is reached, and continues unti
organism is replaced by the newly replicated daughter of ano
organism~or its own daughter!. The copy command~14 in this
particular genotype! fails and writes a random instruction wit
probability g.
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lead to nontrue daughters. The instruction set is robust; c
errors ~mutations! induced during the replication of viabl
organisms have a nonvanishing probability of creating via
new organisms and genotypes. Indeed, by selecting for
tain traits~such as the ability to perform binary logical op
erations! by increasing the relative speed at which instru
tions are executed in organisms which carry these traits,
system can be forced toevolveand find novel genotypes tha
contain more information~and less entropy! than their ances-
tors @11#. Even without this external selection, the syste
evolves organisms~and genotypes! which replicate more ef-
ficiently in less executed instructions.

As a result of this evolution, the fidelity and neutral m
tation rate are not fixed, but can vary with the length of
organism’s genome and the instructions contained ther
Also, new genotypes formed by beneficial mutations that
low faster replication than previously existing genotypes w
have ~on average! an increasing number of organisms—m
.1—until the new, faster replicating genotypes fill up a s
able portion of the grid. All these factors combine to ma
predicting the abundance distributions for sanda much ha
than for the neutral model.

Indeed, rather than being constant during the course
sanda experiment,Rn and F will vary unpredictably as the
population of organisms occupies different areas in ge
typic phase space. Certain genotypes may bebrittle, allow-
ing very few mutations that result in new viable genotyp
The length of the organisms may change, changing both
genomic mutation rate and the neutrality rate. Genotypes
ist that make systematic errors when copying, which
creases the fidelity. In short, the dynamics of these dig
organisms are complex and messy, much like those of t
biochemical brethren. These variations are observed at
same time across different organisms in the population,
are also observed with the progression of time. Still, we
tempt to predict the abundance distributions by approxim
ing the ratio of neutral mutations to true copies by theob-
servedratio of viable genotypes to the total number of viab
organisms ever created

Rn

F
.

Ng

Nv
, ~17!

whereNg is the total number of viable genotypes observ
during a sanda run andNv is the total number of viable
organisms. This relation should hold approximately und
equilibrium conditions. Then, Eq.~16! becomes

m.S 11
Ng

Nv
D 21

, ~18!

and from Eq.~15!

a5
m

F
. ~19!

The fidelity F is inferred from the average lengthl of geno-
types during a run and the~externally enforced! per-
instruction copy mutation rateg, F5(12g) l . Because we
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estimatem and a from macroscopic observables averag
over the length of a run, we expect some error in our res
due to the shifting dynamics of the evolution of genotypes
the system moves in genotypic phase space.

The abundance data from two different sanda runs
shown in Fig. 6 with the predicted abundance curves. T
two runs shared the same grid size and per-instruction c
mutation rate, and were started with the same initial ge
types, but the runs evolved into different regions of gen
typic phase space and consequently had significantly di
ent statistics. Considering the many gross approximations
have made, the agreement between our prediction and
experimental data is surprisingly good~especially as no fit-
ting is involved!. Sanda is most closely related to an ase
ally replicating biological population, such as colonies
certain types of bacteria occupying a single niche. The ge
type abundance distributions measured in sanda are a
gous to the species or subspecies abundance distributio
its biological counterparts. In general, species abundance
tributions are complicated by the effects of sexual reprod
tion, and of the localized and variable influences of oth
species and the environment on species abundances. H
ever, we believe the branching model—used judiciously
can be helpful in the study of such distributions as well.

C. Evolution

Rank-abundance distributions at taxonomic levels hig
than species~e.g., the distribution of the number of familie
per order! are simpler to model than species abundance
tributions, as the effects of the complications noted above
weak or nonexistent. We find that the available data is w
fitted by assuming no direct interaction or fitness differen
between taxa@12#. The shapes of rank-frequency distrib

FIG. 6. Abundance data from two sanda runs with predic
abundance curves. Both runs were started with the same in
genotype for all organisms, the same per-instruction copy muta
rate (g), and the same grid size (1003100). Run 192’s genotype
evolved into a regime of genotypic phase space with longer ave
length, and therefore lower fidelityF and higher neutralityRn , than
Run 132, resulting in the differences in the abundance distributi
The predicted curves were generated by approximating a repre
tative value ofRn /F from the ratio of the number of viable geno
types to the number of viable organisms observed over the run.
data was binned using the template threshold method withT51
~see the Appendix!.
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tions of taxonomic and evolutionary assemblages found
nature are surprisingly uniform. Indeed, Burlando has spe
lated that all higher-order taxonomic rank-frequency dis
butions follow power laws stemming from underlying fract
dynamics@4#. We believe this conclusion is hasty: The dive
gence of the distributions from power law can be observ
by applying appropriate binning methods to the data.~See
the Appendix.! Yule @13# attempted a branching proces
model explanation of these distributions, and claimed t
divergence from power law of rank-abundance patterns
transient and indicated a finite time since the creation of
evolutionary assemblage. Our model indicates that this is
generally the case. We find that the divergence from po
law is not a result of disequilibration, but is an inherent pro
erty of the evolutionary assemblage under consideration
that this divergence provides insight into microscopic pro
erties of the assemblage~e.g., the rate of innovation!.

Say, for example, we are interested in the rank-freque
distribution of the number of families in each order for fos
marine animal orders. We assume that all new families
orders in this assemblage originate from mutations in ex
families. Then, we can define rates of successful mutationRf
for mutations which create new families in the same orde
the original family, andRo for mutations which create an
entirely new order. In this case, unlike the cases trea
above, we approximatea→`; many individual births and
mutations occur, but the proportion that are family or ord
forming is minuscule. Finally, assuming a quasisteady s
~the total numbers of orders and families vary slowly@14#!,
we rewrite Eq.~16!,

m.S 11
Ro

Rf
D 21

~20!

.S 11
No

Nf
D 21

, ~21!

in terms of No and Nf , the total numbers of orders an
families, respectively. As in the previous systems studied,Ro
is the rate of creation of new—competing—orders, whileRf
is the rate of growth of existing orders, andm is determined
by their ratio.

Data for the abundance distribution of the number
families in fossil marine animal orders@15# are shown in Fig.
7. We obtained values forNo andNf directly from the fossil
data to generate the predicted curve withno free parameters.
The agreement is very good, much better than that for
sanda runs where evolutionary parameters such as the fi
ity F and the neutralityRn were constantly changing. Com
paringm and the resultant abundance curves with those
tained above for the rank-abundance distribution of sa
genotypes leads us to the expected conclusion that the p
ability of creation of a new genotype in sanda per birth
much higher than the probability of a new family creating
order in natural evolution. Indeed, a wide variety of highe
order taxonomic assemblages have abundance distribu
consistent withm near 1@4#. We believe this is a robust resu
of the evolutionary process. Low values ofm may not be
observed for large taxon assemblages for several reason
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CHRISTOPH ADAMI AND JOHAN CHU PHYSICAL REVIEW E66, 011907 ~2002!
small value ofm implies either a small number of individua
in the assemblage, or a very specialized niche with a v
low rate of taxon formation. A low number of individual
would lead to a low probability of the taxon being disco
ered and cataloged by biologists. A small number of in
viduals and taxa would result in an assemblage with too
taxa to give us a clear statistical picture. Also, since such
assemblage would have a small population, be incapabl
further adaptation, or both, we expect it would be more s
ceptible to competition and environmental effects leading
early extinction.

D. Sandpile models

It was originally suggested that the self-organization o
served in the sandpile model of Bak, Tang, and Wiesen
~BTW! @3# ~and the power laws it displayed! was an inherent
property of the system, while it now seems established
the system is actually tuned by waiting until avalanches
over before dropping new grains—this is equivalent to
lowing nonlocal interactions@16,17#. The same conclusion i
reached when using a branching process to describe the
lanche dynamics. Branching processes have been applie
sandpile models as early as 1988@19# ~see also,@18,20–23#!.
Using a mean-field approach in higher dimensions (d*4),
power-law distributions for the size of avalanchess(n) can
be obtained analytically, and critical exponents can be ca
lated exactly to reveals(n);n23/2 @18# in the limit of infini-
tesimally small driving. This is supported by numeric
simulations. However, for lower dimensions, sandpiles w
‘‘interfere’’ with themselves, and a smaller exponent
found. Attempts to calculate the effects of this ‘‘final-stat
interaction through renormalization have as yet not b
completely successful@24#. Still, the phenomenon of ‘‘viola-
tions’’ of power-law behavior due tom,1 ~noncritical
branching process! can be seen there as well.

FIG. 7. The rank-frequency distribution of fossil marine anim
orders~squares! @15# and the predicted abundance curve~line!. The
predicted curve was generated—with no free parameters—by
proximating Rn /F by No /Nf50.115. The empirical distribution
agrees with the predicted curve with significance 0.12 using
Kolmogorov-Smirnov test@12#. The fossil data is shown binne
using the template threshold binning method explained in the
pendix withT51.
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IV. DISCUSSION

The Galton-Watson branching process generates po
law distributions when its control parameterm51. In all the
systems we have examined above,

m5S 11
Rc

Rp
D 21

~22!

is determined by the ratio of the rate of introduction of co
petitorsRc to the intrinsic rate of growth of existing assem
blagesRp . As this ratio goes to 0,m→1 and the system
becomes critical.

This relation can be translated into the standard rela
between anorder parameter

a5
Rc

Rp
~23!

and a new form for the control parameter

m5m21. ~24!

Writing a in terms ofm,

a5H ~m2mc!
b ~m.mc!,

0 ~m<mc!,

wheremc51 andb51 ~Fig. 8!. The order parameter repre
sents the rate at which competition is introduced in the s
tem ~the strength of selection!. A value of the control param-
eter m,mc implies a system with no competition and n
selection—an exponentially growing population. Values ofm
higher thanmc indicate that new competition is always bein
introduced and that all existing species or avalanches m
eventually die out. Whenm5mc , competition is introduced
at a vanishingly small rate, and we find the critical situati
where separation of scales occurs.

For sandpile models, thisa is arbitrarily set close to 0 by
using large lattice sizes~reducing dissipation! and waiting
for avalanches to finish before introducing new perturbatio
~resulting in an infinitesimal driving rate and a divergin
diffusion coefficient!. For the biological and biologically in-
spired systems we have considered, the control paramet

l

p-

e

-

FIG. 8. Order parametera as a function of the control paramete
m. For m below mc , the order parameter is 0—organisms~or
events! in the system spawn greater and greater number of daug
organisms~events!, and there is exponential growth. Form.mc ,
competition from newly created organisms~events! stops abun-
dances from growing without bound.m5mc marks the critical point
where abundances can grow to infinity, but do not show exponen
growth, and power-law distributions arise.
7-6
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not set arbitrarily to a critical value. However, the dynam
of the evolutionary process, in which it is much harder
effect large jumps in fitness and function than it is to effe
small ones, lead to naturally observed values ofa being
small, especially for higher taxonomic orders. The dynam
of evolution act, robustly, to keepm nearmc . This in turn
leads to a near power-law pattern for rank-frequency dis
butions.

We have shown that the apparent power laws of a
lanches in species-abundance distributions in artificial
systems, as well as rank-abundance distributions in
onomy can be explained by modeling the dynamics of
underlying system with a simple branching process. T
branching process model successfully predicts, without
parameters, the observed abundance distributions—inclu
their divergence from power law.

A branching process approach may allow the deduction
the microscopic parameters of the system directly from
macroscopic abundance distribution. We find that we
identify a control parameter—the average number of n
events an event directly spawns, and an order paramet
the rate of introduction of competing events into the syste
and that these are related in a form familiar from seco
order phase transitions in statistical physics.
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FIG. 9. Binned avalanche size distribution for the BTW sandp
in the limit of infinitesimally slow driving~the standard BTW pro-
tocol!. The inset shows avalanche size distribution data a
100 000 avalanches. The main panel shows the same data b
using the data threshold method withT51000. That this binning
method accurately reproduces the function this data is drawn f
can be seen by comparing to the data set of 163106 avalanches
~Fig. 10!, which shows no discernible differences between the p
dictions made by binning and the conclusions given by more d
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APPENDIX: BINNING METHODS

When dealing with event distributions best plotted
single log or double log scales~such as exponential an
power-law distributions!, care must be taken in the prope
binning of the experimental data. Say we are interested in
probability distributionP(n) of an event distribution over
positive integer values ofn. We conductN trials, resulting in
a data setQ(n) of the number of events observed for everyn
value. For ranges ofn where the expected or observed num
ber of events for eachn is much higher than 1, normally no
binning is required. However, for ranges ofn whereQ(n) or
P(n) is small, binning is necessary to produce both stati
cally significant data points, and intuitively correct graphic
representations. A constant bin size has several drawba
One must guess and choose an intermediate bin size to s
across a broad range of parameter space, and the shap
slopes of the curve~even in a double log plot! are distorted
@10#. These disadvantages can be overcome by using a
able bin size. However, choosing bin sizes for variable b
ning is time consuming and arbitrary—different choices w
lead to different conclusions. We propose two related me
ods of systematically determining appropriate variable
sizes. Both methods lead to binned data which help in vi
alizing the underlying distribution~slopes and shapes ar
conserved!.

For the first method~thedata threshold method!, we start
by selecting a threshold valueT. Starting fromn51 and
proceeding to higher values, no binning is done until a va
of n is found for whichQ(n),T. When such a valuens is
found, subsequentQ(n) values are added to this amou
until the sum of these values is greater than the thresh
value,

(
n5ns

nl

Q~n!.T. ~A1!

We then have a bin size (nl2ns11), with value(n5ns

nl Q(n).

When plotting, it is convenient to plot this as a single point
the midpoint of@ns ,nl #, with an averaged value,

r
ed

m

-
a.

FIG. 10. Avalanche size distribution in the two-dimension
BTW sandpile model with infinitesimal driving rate (163106 ava-
lanches!.
7-7
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S ns1nl

2
,
(

n5ns

nl

Q~n!

nl2ns11
D . ~A2!

This yields a graphical representation with little distorti
and good predictive power~Figs. 9 and 10!. This binning
procedure is continued until no more data remains to
binned.

The second binning method~the template threshold
method!, uses a predicted probability distributionP(n), or a
reasonable surrogate. Again, we define a threshold value
fitting T. However, in this case, the bin sizes are determin
by comparing values of theexpected distribution

E~n!5P~n!N ~A3!

to T. Starting fromn51 and proceeding to higher values, n
binning is done until a value ofn is found for whichE(n)
,T. When such a valuens is found, subsequentE(n) values
are added to this amount until the sum of these value
greater than the threshold value,
in

ti-

io
ra

i.

01190
e

for
d

is

(
n5ns

nl

E~n!.T. ~A4!

We then have a bin of@ns ,nl # with corresponding size (nl
2ns11). The average value associated with this bin is

(
n5ns

nl

Q~n!

nl2ns11
. ~A5!

This procedure is repeated until the data is exhausted.
this method, the data may be graphically represented ei
as a single point per bin~as in the data threshold metho
above!, or as a point~showing the associated average valu!
for each measured~nonzero! data pointQ(n).

The data threshold method requires noa priori knowl-
edge, and is a good predictor of the underlying distributi
However, when there are few data points, the temp
threshold method is more reliable. For both methods, a ra
of T should be tried and the bestT ~neither over or under
binning! chosen.
i-
;
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